Genomika

Rozwój technik sekwencjonowania DNA oraz możliwości obróbki komputerowej uzyskiwanych sekwencji spowodował powstanie nowej gałęzi biologii molekularnej, zwanej genomiką. Genomika bada podobieństwa i różnice sekwencji DNA całych genomów: zarówno w obrębie tego samego genomu jak i pomiędzy genomami należącymi do różnych gatunków. W ten sposób można śledzić zmiany, jakie dokonywały się w przeszłości na poziomie DNA i które były przyczyną powstawania nowych gatunków. W roku 2001 opublikowano całą sekwencję genomu człowieka, prace nad tym projektem trwały ponad 10 lat. W przyszłości, kiedy sekwencjonowanie będzie tańsze i szybsze, możliwe stanie się ustalanie tzw. profilu genetycznego każdego pacjenta. Na tej podstawie będzie można prognozować prawdopodobieństwo wystąpienia określonych chorób i odpowiednio wcześnie leczyć. Obecnie znane są także genomy ważnych organizmów modelowych, takich jak mysz, muszka owocowa Drosophila melanogaster, nicień Coenorhabditis elegans, drożdże Saccharomyces cerevisiae oraz genomy wielu wirusów i bakterii. Jest to dopiero początek badań nad genomami i najbliższe lata przyniosą z pewnością wiele fascynujących odkryć.

paralogi i ortologiPragnąc ustalić ewolucyjne pokrewieństwo genów bada się głównie podobieństwa pomiędzy sekwencjami aminokwasów w różnych białkach, gdyż na skutek zdegenerowania kodu genetycznego sekwencje na poziomie DNA mogą różnić się w znacznie większym stopniu i może to utrudnić śledzenie pokrewieństw. Współczesna genomika wprowadziła do genetyki dwa nowe pojęcia: paralogi (są to geny wykazujące podobieństwo sekwencji w obrębie konkretnego genomu jakiegoś gatunku) i ortologi (są to geny o podobnych sekwencjach występujące u różnych gatunków).

Po zsekwencjonowaniu genomu drożdży okazało się, że na ok. 6300 genów aż ok. 24% stanowią ortologi genów człowieka. Świadczy to o tym, że w trakcie ewolucji wiele domen białkowych zostało wytworzonych bardzo wcześnie i że nadal funkcjonują one w najbardziej podstawowych procesach metabolicznych u organizmów o bardzo małym stopniu pokrewieństwa. Z drugiej strony — badając pokrewieństwa genów w obrębie genomu drożdży, wykryto aż 55 obszarów zawierających 376 par podobnych do siebie genów, czyli paralogów. Wyniki badań sugerują, że ok. 100 mln lat temu genom drożdży uległ duplikacji. Cześć powielonych genów uległa eliminacji, cześć akumulowała mutacje i uległa przekształceniu do nieaktywnych biologicznie pseudogenów, pozostałe zaś mogły uzyskać nowe funkcje.

horyzontalny transfer genów Genomika umożliwia także śledzenie jeszcze jednego procesu, który wydaje się odgrywać rolę w ewolucji — horyzontalnego transferu genów. Polega on na nabywaniu genów od innego gatunku. Proces ten znany jest u bakterii, gdzie przenoszenie DNA może się dokonywać za pośrednictwem plazmidów, wirusów lub procesu pobierania DNA ze środowiska. U organizmów wyższych bariery pomiędzy gatunkami wydają się bardziej szczelne i jest mało prawdopodobne, aby proces ten mógł zachodzić. W zsekwencjonowanym genomie człowieka znaleziono kilkadziesiąt ortologów bakteryjnych, ich pochodzenie nie jest jednak jasne.

genom człowieka Ustalenie w roku 2001 pełnej sekwencji genomu człowieka przyniosło kilka niespodziewanych informacji. Liczba genów okazała się znacznie mniejsza od spodziewanej — wynosi bowiem ok. 35-40 tys. Co więcej, sekwencje kodujące białka, czyli geny sensu stricte, zajmują jedynie 1,5% całego genomu. Ustalenie sekwencji genów nie jest oczywiście równoznaczne z poznaniem funkcji kodowanych przez nie białek, dlatego też konieczne będzie wiele lat badań, także nad poznawaniem wzajemnych relacji pomiędzy białkami. Szczególnie fascynujące będą badania nad ewolucją naczelnych i zidentyfikowanie tych genów, które różnią nas od szympansa, goryla i orangutana.

Copyright © 1997-2022 Wydawnictwo Naukowe PWN SA
infolinia: 0 801 33 33 88